Difference between revisions of "April 27, 2004"

From LPOD
Jump to: navigation, search
 
(10 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
__NOTOC__
 
__NOTOC__
 
=A Penetrating View of Imbrium=
 
=A Penetrating View of Imbrium=
 
+
<!-- Start of content -->
</p>
 
 
<table width="640"  border="0" align="center" cellpadding="6" cellspacing="2">
 
<table width="640"  border="0" align="center" cellpadding="6" cellspacing="2">
    <tr>
+
<tr>
      <td width="50%"><h2 align="left">A Penetrating View of Imbrium</h2></td>
+
</tr>
     
 
  <td width="50%"><h2 align="right">April  27, 2004</h2></td>
 
    </tr>
 
 
</table>
 
</table>
 
<table width="85%"  border="0" align="center" cellpadding="6" cellspacing="2">
 
<table width="85%"  border="0" align="center" cellpadding="6" cellspacing="2">
    <tr>
+
<tr>
      <td colspan="2"><div align="center">
+
<td colspan="2"><div align="center">
    [javascript:;" onMouseOver="MM_swapImage('main_image','','images/LPOD-2004-04-27b.jpeg',1)" onMouseOut="MM_swapImgRestore() <IMG SRC="images/LPOD-2004-04-27.jpeg" NAME="main_image" width="558" height="425" border="0">]</div>
+
{{HoverImage|LPOD-2004-04-27.jpeg|LPOD-2004-04-27b.jpeg}}</div>
+
</td>
      </td>
+
</tr>
  </tr>
 
 
</table>
 
</table>
 
<table width="100%"  border="0" cellpadding="8">
 
<table width="100%"  border="0" cellpadding="8">
    <tr>
+
<tr>
      <td><div align="center" span class="main_sm">Image Credit:  [mailto:campbellb@nasm.si.edu Bruce Campbell]</div></td>
+
<td><div align="center"><p>Image Credit:  [mailto:campbellb@nasm.si.edu Bruce Campbell]</p></div></td>
    </tr>
+
</tr>
 
</table>
 
</table>
  </p>
 
 
<table class="story" border="0" bgcolor="#FFFFFF" width="90%" cellpadding="10" align="center"><tr><td>
 
<table class="story" border="0" bgcolor="#FFFFFF" width="90%" cellpadding="10" align="center"><tr><td>
 
+
<p class="story" align="center"><b>A Penetrating View of Imbrium </b></p>
  <p class="story" align="center"><b>A Penetrating View of Imbrium </b></p>
+
<p class="story" align="left">We observe the Moon with our green-sensitive eyeballs, red-sensitive ccd cameras, multi-spectral spacecraft sensors and also with radar of various wavelengths. Each view provides somewhat different information about the top layers of the Moon. Each detector provides information to a depth  
 
+
about equal to a few times the wavelength used. Optical sensors probe the top microns of the lunar surface, but this 70-cm radar image (from the giant Arecibo radio telescope in Puerto Rico) penetrates several meters into the lunar soil. Optical images provide 2-dimensional surface information but radar tells  
  <p class="story" align="left">We observe the Moon with our green-sensitive eyeballs, red-sensitive ccd cameras, multi-spectral spacecraft sensors and also with radar of various wavelengths. Each view provides somewhat different information about the top layers of the Moon. Each detector provides information to a depth  
+
about volume. Bruce Campbell of the Smithsonian Institution is using these radar images as probes of the depth properties of the lunar regolith (or soils). For example, the northern part of the ejecta blanket of Plato is quite distinct here, where it is less so in optical and shorter-wavelength radar images.  
about equal to a few times the wavelength used. Optical sensors probe the top microns of the lunar surface, but this 70-cm radar image (from the giant Arecibo radio telescope in Puerto Rico) penetrates several meters into the lunar soil. Optical images provide 2-dimensional surface information but radar tells  
+
Presumably this is due to radar scattering from subsurface blocky ejecta. The difference in brightness across Mare Imbrium probably relates to the amount of titanium in the lava flows - compare this image with a [[February_8,_2004|multi-spectral]] view.
about volume. Bruce Campbell of the Smithsonian Institution is using these radar images as probes of the depth properties of the lunar regolith (or soils). For example, the northern part of the ejecta blanket of Plato is quite distinct here, where it is less so in optical and shorter-wavelength radar images.  
+
</p>
Presumably this is due to radar scattering from subsurface blocky ejecta. The difference in brightness across Mare Imbrium probably relates to the amount of titanium in the lava flows - compare this image with a [http://www.lpod.org/LPOD-2004-02-08.htm multi-spectral] view.
+
<blockquote>
</p>
+
<p align="right" class="story">&#8212; [mailto:tychocrater@yahoo.com Chuck Wood]</p>
  <blockquote>
+
</blockquote>  <p><b>Technical Details:</b><br>
    <p align="right" class="story">&#8212; [mailto:chuck@observingthesky.org Chuck Wood]</p>
+
Attached is a better view of the whole area at 70-cm wavelength; sinusoidal projection.  The data were collected at Arecibo in 2000, and have a full spatial resolution of 400 m per pixel (this image is downsampled).  The polarization is &quot;opposite sense circular (LR)&quot;; no scattering law has been removed. We use a fully focused radar processing approach to obtain high spatial resolution over relatively long integration times.
  </blockquote>  <p><b>Technical Details:</b><br>
+
</p>
 
+
<p class="story"><b>Related Links:</b><br>
  Attached is a better view of the whole area at 70-cm wavelength; sinusoidal projection.  The data were collected at Arecibo in 2000, and have a full spatial resolution of 400 m per pixel (this image is downsampled).  The polarization is &quot;opposite sense circular (LR)&quot;; no scattering law has been removed. We use a fully focused radar processing approach to obtain high spatial resolution over relatively long integration times.
 
</p>
 
 
 
  <p class"story"><b>Related Links:</b><br>
 
 
 
 
[http://www.nasm.si.edu/research/ceps/research/moon/radar_poles_detail.cfm Lunar Radar Mapping]</p>
 
[http://www.nasm.si.edu/research/ceps/research/moon/radar_poles_detail.cfm Lunar Radar Mapping]</p>
 
+
<p><b>Yesterday's LPOD:</b> [[April 26, 2004|America Hits the Moon!]] </p>
  <p class"story"> <b>Tomorrow's LPOD:</b> LRO - Our Future on the Moon</p>
+
<p><b>Tomorrow's LPOD:</b> [[April 28, 2004|Our Furture on the Moon]] </p>
 
+
</td>
  <p><img src="../../../MainPage/spacer.gif" width="640" height="1"></p>
 
  </td>
 
 
</tr>
 
</tr>
 
</table>
 
</table>
 
+
<!-- start bottom -->
  <!-- start bottom -->
+
<hr>
  <hr width="640">
+
<p align="center" class="main_titles"><b>Author & Editor:</b><br>
  <p align="center" class="main_titles"><b>Author & Editor:</b><br>
+
[mailto:tychocrater@yahoo.com Charles A. Wood]</p>
      [mailto:chuck@observingthesky.org Charles A. Wood]</p>
+
<!-- Cleanup of credits -->
      <p align="center" class="main_titles"><b>Technical Consultant:</b><br>
+
<!-- Cleanup of credits -->
      [mailto:anthony@perseus.gr Anthony Ayiomamitis]</p>
+
<!-- Cleanup of credits -->
      <p align="center" class="main_titles"><b>[mailto:webmaster@entropysponge.com Contact Webmaster]</b></p>
+
<!-- Cleanup of credits -->
      <p align="center" class="main_titles"><b>A service of:</b><br>
+
<!-- Cleanup of credits -->
      <a class="one" href="http://www.observingthesky.org/">ObservingTheSky.Org</a></p>
+
<!-- Cleanup of credits -->
      <p align="center" class="main_titles"><b>Visit these other PODs:</b> <br>
+
<!-- Cleanup of credits -->
      <a class="one" href="http://antwrp.gsfc.nasa.gov/apod/astropix.html">Astronomy</a> | <a class="one" href="http://www.msss.com/">Mars</a> | <a class="one" href="http://epod.usra.edu/">Earth</a></p>
+
<p>&nbsp;</p>
  <p>&nbsp;</p>
+
<!-- End of content -->
 
+
{{wiki/ArticleFooter}}
 
 
 
 
----
 
===COMMENTS?===
 
Click on this icon [[image:PostIcon.jpg]] at the upper right to post a comment.
 

Latest revision as of 19:16, 7 February 2015

A Penetrating View of Imbrium


LPOD-2004-04-27.jpeg

LPOD-2004-04-27b.jpeg

Image Credit: Bruce Campbell

A Penetrating View of Imbrium

We observe the Moon with our green-sensitive eyeballs, red-sensitive ccd cameras, multi-spectral spacecraft sensors and also with radar of various wavelengths. Each view provides somewhat different information about the top layers of the Moon. Each detector provides information to a depth about equal to a few times the wavelength used. Optical sensors probe the top microns of the lunar surface, but this 70-cm radar image (from the giant Arecibo radio telescope in Puerto Rico) penetrates several meters into the lunar soil. Optical images provide 2-dimensional surface information but radar tells about volume. Bruce Campbell of the Smithsonian Institution is using these radar images as probes of the depth properties of the lunar regolith (or soils). For example, the northern part of the ejecta blanket of Plato is quite distinct here, where it is less so in optical and shorter-wavelength radar images. Presumably this is due to radar scattering from subsurface blocky ejecta. The difference in brightness across Mare Imbrium probably relates to the amount of titanium in the lava flows - compare this image with a multi-spectral view.

Chuck Wood

Technical Details:

Attached is a better view of the whole area at 70-cm wavelength; sinusoidal projection. The data were collected at Arecibo in 2000, and have a full spatial resolution of 400 m per pixel (this image is downsampled). The polarization is "opposite sense circular (LR)"; no scattering law has been removed. We use a fully focused radar processing approach to obtain high spatial resolution over relatively long integration times.

Related Links:
Lunar Radar Mapping

Yesterday's LPOD: America Hits the Moon!

Tomorrow's LPOD: Our Furture on the Moon


Author & Editor:
Charles A. Wood

 


COMMENTS?

Register, Log in, and join in the comments.