Difference between revisions of "October 22, 2004"
(8 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
__NOTOC__ | __NOTOC__ | ||
=H-Alpha Moon= | =H-Alpha Moon= | ||
+ | <!-- Start of content --> | ||
<table width="85%" border="0" align="center" cellpadding="6" cellspacing="2"> | <table width="85%" border="0" align="center" cellpadding="6" cellspacing="2"> | ||
<tr> | <tr> | ||
Line 27: | Line 28: | ||
[http://www.celestialwonders.com/Latest.html Frank's Celestial Wonders] | [http://www.celestialwonders.com/Latest.html Frank's Celestial Wonders] | ||
</p> | </p> | ||
− | <p | + | <p><b>Yesterday's LPOD:</b> [[October 21, 2004|60 Inches of Tycho]] </p> |
+ | <p><b>Tomorrow's LPOD:</b> [[October 23, 2004|Imaging the First Lunar Photographer]] </p> | ||
+ | </td> | ||
</tr> | </tr> | ||
</table> | </table> | ||
Line 38: | Line 41: | ||
<p align="center" class="main_titles"><b>Author & Editor:</b><br> | <p align="center" class="main_titles"><b>Author & Editor:</b><br> | ||
[mailto:tychocrater@yahoo.com Charles A. Wood]</p> | [mailto:tychocrater@yahoo.com Charles A. Wood]</p> | ||
− | < | + | <!-- Cleanup of credits --> |
− | + | <!-- Cleanup of credits --> | |
− | < | + | <!-- Cleanup of credits --> |
− | + | <!-- Cleanup of credits --> | |
− | + | <!-- Cleanup of credits --> | |
− | < | + | <!-- Cleanup of credits --> |
− | < | + | <!-- Cleanup of credits --> |
− | + | <!-- Cleanup of credits --> | |
− | < | + | <!-- Cleanup of credits --> |
− | + | {{wiki/ArticleFooter}} | |
− | |||
− | |||
− | |||
− | ---- | ||
− | |||
− |
Latest revision as of 14:18, 15 March 2015
H-Alpha Moon
Image Credit: Frank Barrett |
H-Alpha Moon Most images of the Moon are taken in visible light, which is where human eyes are most sensitive. But here (right) is one taken through a hydrogen-alpha filter which is normally used to image the Sun in a narrow red part (656.3 nm) of the visible spectrum. I compare this image to Frank's previous LPOD (and APOD!) image on the left which was taken in visible light. I enhanced both images, making comparison a little uncertain. Nevertheless, there are a few interesting comparisons. first, the two images look quite similar - probably because the Sun is quite bright at H-alpha wavelengths, contributing significantly to its total visible brightness. Second, there are some differences. In H-alpha, Mare Nectaris is more muted - the rays that cross it are more strongly depicted. The same seems true for maria Fecunditatis and Crisium - both are low in titanium. Additionally, the dark mare patches south of Mare Serenitatis have more contrast on the H-alpha image. Frank's image suggests that amateurs may want to experiment imaging the Moon thru different color filters to explore compositional differences in the maria. Technical Details: Related Links: Yesterday's LPOD: 60 Inches of Tycho Tomorrow's LPOD: Imaging the First Lunar Photographer |
Author & Editor: COMMENTS?Register, Log in, and join in the comments.
|