Difference between revisions of "November 11, 2004"

From LPOD
Jump to: navigation, search
Line 1: Line 1:
 
__NOTOC__
 
__NOTOC__
 
=An Oblique View of Prom. Laplace=
 
=An Oblique View of Prom. Laplace=
 
 
<table width="85%"  border="0" align="center" cellpadding="6" cellspacing="2">
 
<table width="85%"  border="0" align="center" cellpadding="6" cellspacing="2">
<tr>
+
<tr>
<td width="50%"></td>
+
<td width="50%"><h2><nobr>An Oblique View of Prom. Laplace</nobr></h2></td>
</tr>
+
</tr>
 
</table>
 
</table>
 
<table width="85%"  border="0" align="center" cellpadding="6" cellspacing="2">
 
<table width="85%"  border="0" align="center" cellpadding="6" cellspacing="2">
<tr><td colspan="2" valign="top"><div align="center">
+
<tr><td colspan="2" valign="top"><div align="center">
<img src="archive/2004/11/images/LPOD-2004-11-11.jpeg" border="0">
+
<img src="archive/2004/11/images/LPOD-2004-11-11.jpeg" border="0">
</div></td>
+
</div></td>
    </tr>
+
</tr>
 
</table>
 
</table>
 
<table width="80%"  border="0" align="center" cellpadding="8">
 
<table width="80%"  border="0" align="center" cellpadding="8">
    <tr><td><div align="center" class="main_sm">Image Credit: <a class="one" href="http://www.hq.nasa.gov/office/pao/History/ap15fj/a15images.htm">Apollo 15 Flight Journal</a> and AS15-81-10976 and LO IV-i34M</p>
+
<tr><td><div align="center" class="main_sm">Image Credit: [http://www.hq.nasa.gov/office/pao/History/ap15fj/a15images.htm Apollo 15 Flight Journal] and AS15-81-10976 and LO IV-i34M</p>
</div></td>
+
</div></td>
</tr>   
+
</tr>   
</table>   
+
</table>   
 
<br>
 
<br>
 
<table class="story" border="0" bgcolor="#FFFFFF" width="90%" cellpadding="10" align="center"><tr><td>
 
<table class="story" border="0" bgcolor="#FFFFFF" width="90%" cellpadding="10" align="center"><tr><td>
<p align="center"><b>An Oblique View of Prom. Laplace</b></p>
+
<p align="center"><b>An Oblique View of Prom. Laplace</b></p>
<p align="left">We see the Moon from such as vast distance that our views mostly have overhead perspectives (except along the limb). Often I have wondered what a particular feature look like on the ground. The Apollo images from the lunar surface provide that view for six spots, but some of the astronauts' low oblique images give a near ground perspective for more areas. And these images are often little known. This is the case for this low perspective looking across northern Mare Imbrium to the edge of the Sinus Iridum crater, which is called Promontory Laplace. This 2.6 km high headland is a fascinating lunar landform that I have observed many times, but until I stumbled across this image in the <i>Apollo 15 Lunar Flight Journal</i> had no idea what it looked like in profile. This view is essentially a cross-section through an impact crater rim. The right side slopes gently (about 8 degrees) down to the surrounding terrain, whereas the inner crater rim (left side) is much steeper - about 25 degrees. The outer rim slope is due to the feathering out of the rim uplift and ejecta, and the steep inner slope results from terrace-forming collapses. In the foreground of the image is the fresh simple crater Helicon B (5.6 km wide, 1.1 km deep) and beyond that is Helicon (25 km, 1.9 km).</p>
+
<p align="left">We see the Moon from such as vast distance that our views mostly have overhead perspectives (except along the limb). Often I have wondered what a particular feature look like on the ground. The Apollo images from the lunar surface provide that view for six spots, but some of the astronauts' low oblique images give a near ground perspective for more areas. And these images are often little known. This is the case for this low perspective looking across northern Mare Imbrium to the edge of the Sinus Iridum crater, which is called Promontory Laplace. This 2.6 km high headland is a fascinating lunar landform that I have observed many times, but until I stumbled across this image in the <i>Apollo 15 Lunar Flight Journal</i> had no idea what it looked like in profile. This view is essentially a cross-section through an impact crater rim. The right side slopes gently (about 8 degrees) down to the surrounding terrain, whereas the inner crater rim (left side) is much steeper - about 25 degrees. The outer rim slope is due to the feathering out of the rim uplift and ejecta, and the steep inner slope results from terrace-forming collapses. In the foreground of the image is the fresh simple crater Helicon B (5.6 km wide, 1.1 km deep) and beyond that is Helicon (25 km, 1.9 km).</p>
<blockquote><p align="right">&#8212; [mailto:chuck@observingthesky.org Chuck Wood]</blockquote>
+
<blockquote><p align="right">&#8212; [mailto:tychocrater@yahoo.com Chuck Wood]</blockquote>
 
<p align="left"><p><b>Technical Details:</b><br>
 
<p align="left"><p><b>Technical Details:</b><br>
 
I thank [mailto:dave.woods@ntlworld.com David Woods] and Frank O'Brien for these images and the wonderful resource that their Apollo Journals are!</p>
 
I thank [mailto:dave.woods@ntlworld.com David Woods] and Frank O'Brien for these images and the wonderful resource that their Apollo Journals are!</p>
Line 29: Line 28:
 
<br>Rukl <i>Atlas of the Moon,</i> Sheet 10
 
<br>Rukl <i>Atlas of the Moon,</i> Sheet 10
 
<p align="left"><b>Tomorrow's LPOD: </b> A Giant Messier</p>
 
<p align="left"><b>Tomorrow's LPOD: </b> A Giant Messier</p>
<p><img src="MainPage/spacer.gif" width="640" height="1"></p></td>
+
</tr>
</tr>
 
 
</table>
 
</table>
 
<br>
 
<br>
 
<table width="100%"  border="0" cellspacing="2" cellpadding="4">
 
<table width="100%"  border="0" cellspacing="2" cellpadding="4">
<tr>
+
<tr>
<td><hr width="640"></td>
+
<td><hr></td>
</tr>
+
</tr>
<tr><td>
+
<tr><td>
<p align="center" class="main_titles"><b>Author &amp; Editor:</b><br>  
+
<p align="center" class="main_titles"><b>Author &amp; Editor:</b><br>  
[mailto:chuck@observingthesky.org Charles A. Wood]</p>
+
[mailto:tychocrater@yahoo.com Charles A. Wood]</p>
<p align="center" class="main_titles"><b>Technical Consultant:</b><br>
+
<p align="center" class="main_titles"><b>Technical Consultant:</b><br>
[mailto:anthony@perseus.gr Anthony Ayiomamitis]</p>
+
[mailto:anthony@perseus.gr Anthony Ayiomamitis]</p>
<p align="center" class="main_titles"><b>Contact Translator:</b><br>
+
<p align="center" class="main_titles"><b>Contact Translator:</b><br>
[mailto:pablolonnie@yahoo.com.mx" class="one Pablo Lonnie Pacheco Railey]  (Es)<br>
+
[mailto:pablolonnie@yahoo.com.mx" class="one Pablo Lonnie Pacheco Railey]  (Es)<br>
[mailto:chlegrand@free.fr" class="one Christian Legrand] (Fr)</p>
+
[mailto:chlegrand@free.fr" class="one Christian Legrand] (Fr)</p>
<p align="center" class="main_titles"><b>[mailto:webuser@observingthesky.org Contact Webmaster]</b></p>
+
<p align="center" class="main_titles"><b>[mailto:webuser@observingthesky.org Contact Webmaster]</b></p>
<p align="center" class="main_titles"><b>A service of:</b><br>
+
<p align="center" class="main_titles"><b>A service of:</b><br>
[http://www.observingthesky.org/" class="one ObservingTheSky.Org]</p>
+
[http://www.observingthesky.org/" class="one ObservingTheSky.Org]</p>
<p align="center" class="main_titles"><b>Visit these other PODs:</b> <br>
+
<p align="center" class="main_titles"><b>Visit these other PODs:</b> <br>
[http://antwrp.gsfc.nasa.gov/apod/astropix.html" class="one Astronomy] | [http://www.msss.com/" class="one Mars] | [http://epod.usra.edu/" class="one Earth]</p>
+
[http://antwrp.gsfc.nasa.gov/apod/astropix.html" class="one Astronomy] | [http://www.msss.com/" class="one Mars] | [http://epod.usra.edu/" class="one Earth]</p>
</td></tr>
+
</td></tr>
 
</table>  
 
</table>  
 
<p>&nbsp;</p>
 
<p>&nbsp;</p>
 
 
 
 
 
----
 
----
 
===COMMENTS?===  
 
===COMMENTS?===  
 
Click on this icon [[image:PostIcon.jpg]] at the upper right to post a comment.
 
Click on this icon [[image:PostIcon.jpg]] at the upper right to post a comment.

Revision as of 18:27, 4 January 2015

An Oblique View of Prom. Laplace

<nobr>An Oblique View of Prom. Laplace</nobr>

<img src="archive/2004/11/images/LPOD-2004-11-11.jpeg" border="0">

Image Credit: Apollo 15 Flight Journal and AS15-81-10976 and LO IV-i34M


An Oblique View of Prom. Laplace

We see the Moon from such as vast distance that our views mostly have overhead perspectives (except along the limb). Often I have wondered what a particular feature look like on the ground. The Apollo images from the lunar surface provide that view for six spots, but some of the astronauts' low oblique images give a near ground perspective for more areas. And these images are often little known. This is the case for this low perspective looking across northern Mare Imbrium to the edge of the Sinus Iridum crater, which is called Promontory Laplace. This 2.6 km high headland is a fascinating lunar landform that I have observed many times, but until I stumbled across this image in the Apollo 15 Lunar Flight Journal had no idea what it looked like in profile. This view is essentially a cross-section through an impact crater rim. The right side slopes gently (about 8 degrees) down to the surrounding terrain, whereas the inner crater rim (left side) is much steeper - about 25 degrees. The outer rim slope is due to the feathering out of the rim uplift and ejecta, and the steep inner slope results from terrace-forming collapses. In the foreground of the image is the fresh simple crater Helicon B (5.6 km wide, 1.1 km deep) and beyond that is Helicon (25 km, 1.9 km).

Chuck Wood

Technical Details:
I thank David Woods and Frank O'Brien for these images and the wonderful resource that their Apollo Journals are!

Related Links:
Apollo 15 Flight Journal
Rukl Atlas of the Moon, Sheet 10

Tomorrow's LPOD: A Giant Messier



Author & Editor:
Charles A. Wood

Technical Consultant:
Anthony Ayiomamitis

Contact Translator:
" class="one Pablo Lonnie Pacheco Railey (Es)
" class="one Christian Legrand (Fr)

Contact Webmaster

A service of:
" class="one ObservingTheSky.Org

Visit these other PODs:
" class="one Astronomy | " class="one Mars | " class="one Earth

 


COMMENTS?

Click on this icon File:PostIcon.jpg at the upper right to post a comment.